Caloric restriction impacts plasma microRNAs in rhesus monkeys
نویسندگان
چکیده
Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.
منابع مشابه
Age-associated miRNA Alterations in Skeletal Muscle from Rhesus Monkeys reversed by caloric restriction
The levels of microRNAs (miRNAs) are altered under different conditions such as cancer, senescence, and aging. Here, we have identified differentially expressed miRNAs in skeletal muscle from young and old rhesus monkeys using RNA sequencing. In old muscle, several miRNAs were upregulated, including miR-451, miR-144, miR-18a and miR-15a, while a few miRNAs were downregulated, including miR-181a...
متن کاملEffects of dietary caloric restriction and aging on thyroid hormones of rhesus monkeys.
Plasma levels of thyroid hormones - triiodothyronine (T 3 ), thyroxin (T 4 ), and thyroid-stimulating hormone (TSH) were measured in male and female rhesus monkeys (Macaca mulatta) fed either ad libitum or a 30 % calorie-restricted (CR) diet (males for 11 years; females for 6 years). The same hormones were measured in another group of young male rhesus monkeys during adaptation to the 30 % CR r...
متن کاملAuditory function in rhesus monkeys: effects of aging and caloric restriction in the Wisconsin monkeys five years later.
Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL. Subjects were from the pool of 55 rhes...
متن کاملCaloric restriction increases HDL2 levels in rhesus monkeys ( Macaca mulatta).
Caloric restriction (CR) prolongs the life of rodents and other small animals, but the benefits of CR for primates and people are as yet unknown, and mechanisms by which CR may slow aging remain unidentified. A study of rhesus monkeys, Macaca mulatta, is underway to determine if CR might prolong life span in primates and to evaluate potential mechanisms for life prolongation. Thirty rhesus monk...
متن کاملIn vitro oxidation of low-density lipoprotein in two species of nonhuman primates subjected to caloric restriction.
Caloric restriction (CR), which increases longevity and retards age-associated diseases in laboratory rodents, is being evaluated in nonhuman primate trials. CR reduces oxidative stress in rodents and appears to improve risk factors for cardiovascular disease in nonhuman primates. We tested the hypothesis that low-density lipoprotein (LDL) oxidizability is reduced in two monkey species (rhesus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017